Information interaction in outcome prediction

Information interaction in outcome prediction

2021, Sep 28    

Link to the paper

Presentation of the paper at RecSys’21, in Amsterdam.

In most real-world applications, it is seldom the case that a result appears independently from an environment. In social networks, users’ behavior results from the people they interact with, news in their feed, or trending topics. In natural language, the meaning of phrases emerges from the combination of words. In general medicine, a diagnosis is established on the basis of the interaction of symptoms. Here, we propose the Interacting Mixed Membership Stochastic Block Model (IMMSBM), which investigates the role of interactions between entities (hashtags, words, memes, etc.) and quantifies their importance within the aforementioned corpora. We find that in inference tasks, taking them into account leads to average relative changes with respect to non-interacting models of up to 150\% in the probability of an outcome and greatly improves the predictions performances. Furthermore, their role greatly improves the predictive power of the model. Our findings suggest that neglecting interactions when modeling real-world phenomena might lead to incorrect conclusions being drawn.

The talk

The slides

This browser does not support PDFs. Please download the PDF to view it: Download PDF.

Link to the paper:

Information interaction in outcome prediction

DOI: 10.1145/3460231.3474254