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ABSTRACT
Most real-world networks evolve over time. Existing literature
proposes models for dynamic networks that are either unlabeled
or assumed to have a single membership structure. On the other
hand, a new family of Mixed Membership Stochastic Block Mod-
els (MMSBM) allows to model static labeled networks under the
assumption of mixed-membership clustering. In this work, we pro-
pose to extend this later class of models to infer dynamic labeled
networks under a mixed membership assumption. Our approach
takes the form of a temporal prior on the model’s parameters. It
relies on the single assumption that dynamics are not abrupt. We
show that our method significantly differs from existing approaches,
and allows to model more complex systems –dynamic labeled net-
works. We demonstrate the robustness of our method with several
experiments on both synthetic and real-world datasets. A key inter-
est of our approach is that it needs very few training data to yield
good results. The performance gain under challenging conditions
broadens the variety of possible applications of automated learning
tools –as in social sciences, which comprise many fields where
small datasets are a major obstacle to the introduction of machine
learning methods.
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1 EXPLICIT DERIVATION OF THE E-STEP
1.1 Short derivation
This demonstration can be found in [1, 4, 5]. We recall the log-
likelihood as defined in the main paper:

log 𝑃 (\, 𝑝 |𝑅◦) ∝ log 𝑃 (𝑅◦ |\, 𝑝)
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In Eq.1, we introduced a proposal distribution 𝜔 (𝑡 )
𝑖,𝑜

(𝑘), that rep-
resents the probability of one cluster allocation 𝑘 given the ob-
servation (𝑖, 𝑜, 𝑡). The last line followed from Jensen’s inequality
assuming that
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which provides us with the expectation formula. The prior terms
𝑃 (\ (𝑡 )

𝑖
) and 𝑃 (𝑝 (𝑡 )

𝑘
) have no effect on the result as they cancel in

the inequality 1.

1.2 Full derivation
The derivation presented in this section follows a well-known gen-
eral derivation of the EM algorithm, which can be found in C.M.
Bishop’s Pattern Recognition and Machine Learning-p.450 for in-
stance.

We recall that one entry of the dataset𝑅◦ takes the form of a tuple
(𝑖, 𝑜, 𝑡), where 𝑖 is the input item and 𝑜 an associated label at time 𝑡 .
𝑘 ∈ 𝐾 denotes the latent variable accounting for cluster allocation
among𝐾 possible values. The total log-likelihood is the sum of each
observation’s log-likelihood. Without loss of generality, we focus
on a single observation (𝑖, 𝑜, 𝑡). The expression of the log-posterior
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distribution for one observation reads:
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The aim of the E-step is to find the expression of 𝑄 (𝑡 )

𝑖,𝑜
(𝑘) that

maximizes the lower bound of the log-likelihood with respect to
the latent variables 𝑘 . Given that the log-likelihood does not de-
pend on 𝑄 (𝑡 )
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𝑃 (𝑡 ) (𝑘 |𝑖, 𝑜, \ (𝑡 ) , 𝑝 (𝑡 ) ). In this case, the lower-bound on the log-
likelihood equals the likelihood itself and thus reaches a global
maximum with respect to the latent variables 𝑘 for fixed parame-
ters \ (𝑡 ) and 𝑝 (𝑡 ) .

Given the definition of our simple model, the derivation of
𝑃 (𝑘 |𝑖, 𝑜, \ (𝑡 ) , 𝑝 (𝑡 ) ) is straightforward. The probability of one com-
bination of clusters 𝑘 among 𝐾 possible combinations given an
input features vector and an output 𝑜 is proportional to 𝑝 (𝑡 )
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Therefore:
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which is the expression of 𝜔 (𝑡 )
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(𝑘) in the main article.

2 EXPLICIT DERIVATION OF THE M-STEP
FOR P

𝜕

(
log 𝑃 (\, 𝑝 |𝑅◦) −∑

𝑘 ′,𝑡 ′ 𝜓
(𝑡 ′ )
𝑘 ′

(∑𝑜 𝑝 (𝑡 ′ )𝑘 ′
(𝑜) − 1)

)
𝜕𝑝

(𝑡 )
𝑘

(𝑜)
= 0

↔
∑︁

(𝑖,𝑡 ) ∈𝜕𝑜

𝜔
(𝑡 )
𝑖,𝑜

(𝑘)

𝑝
(𝑡 )
𝑘

(𝑜)
+
𝛽 ⟨𝑝 (𝑡 )

𝑘
(𝑜)⟩

𝑝
(𝑡 )
𝑘

(𝑜)
−𝜓 (𝑡 )

𝑘
= 0

↔
∑︁

(𝑖,𝑡 ) ∈𝜕𝑜
𝜔
(𝑡 )
𝑖,𝑜

(𝑘) + 𝛽 ⟨𝑝 (𝑡 )
𝑘

(𝑜)⟩ = 𝜓 (𝑡 )
𝑘
𝑝
(𝑡 )
𝑘

(𝑜)

↔
∑︁

(𝑖,𝑡 ) ∈𝜕𝑜

∑︁
𝑜

𝜔
(𝑡 )
𝑖,𝑜

(𝑘) + 𝛽
∑︁
𝑜

⟨𝑝 (𝑡 )
𝑘

(𝑜)⟩︸         ︷︷         ︸
=1

= 𝜓
(𝑡 )
𝑘

↔
∑

(𝑖,𝑡 ) ∈𝜕𝑜 𝜔
(𝑡 )
𝑖,𝑜

(𝑘) + 𝛽 ⟨𝑝 (𝑡 )
𝑘

(𝑜)⟩∑
(𝑖,𝑜,𝑡 ) ∈𝑅◦ 𝜔

(𝑡 )
𝑖,𝑜

(𝑘) + 𝛽
= \

(𝑡 )
𝑖,𝑘

(6)

3 USING THE PRIOR ON SIMILARWORKS
Throughout this section, we highlight the changes brought by our
method to the EM equations derived in the mentioned papers. In
summary, we see that out method allows to make these works
dynamic with minimal changes of the original models.

3.1 Bi-MMSBM [1]
In [1], the authors apply a MMSBM to a labeled bipartite network.
The nodes on each side of the bipartite network are associated to
their own membership matrix; membership of nodes 𝑖 ∈ 𝐼 over 𝐾
clusters is encoded into \ ∈ R𝐼×𝐾 , and membership of nodes 𝑗 ∈ 𝐽
over 𝐿 clusters is encoded into [ ∈ R𝐽 ×𝐿 . The block-interaction
matrix for the label 𝑜 ∈ 𝑂 is noted 𝑝 (𝑜) ∈ R𝐾×𝐿 .

Assuming a temporal version, items 𝑖 and 𝑗 to be linked by a
label 𝑜 at time 𝑡 reads:
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Given the same set of observation s 𝑅◦ as in the main article, the
posterior distribution follows:
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such that:
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Here again, 𝛽 is set fixed for demonstration purposes, but can be
tuned at will by the user. This allows to choose the extent to which
dynamics shall be smoothed, or ignored.

3.2 T-MBM [5]
The T-MBM is essentially the same model as [1] but with one type
of entry that can appear twice in one observation. Both entries
share the same membership matrix \ . The probability of a label of
type 𝑜 given entries ℎ; 𝑖 and 𝑗 at time 𝑡 is now written:
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The posterior distribution follows the same expression as in Eq.8.
The expectation step is left unchanged by the choice of the priors,
and the new maximization equations are given below:
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4 JOINTLY INFERRING \ AND 𝑝

In the main article, 𝑝 is provided to the model and only \ has to be
inferred. Doing so, we can confront inferred membership vectors
to the ground truth while avoiding label-switching issues [2, 3].
When 𝑝 is also to be inferred, finding a correspondence between
the inferred clusters and the ground-truth is not a trivial task, and

cannot be performed in unbiased ways. However, the good results
yielded by the model, presented in Fig.1, when also inferring 𝑝 hints
that the membership vectors are correctly inferred.

5 CLUSTERS COMPOSITION FOR THE
EPIGRAPHY EXPERIMENT
• Cluster 0
– Roma (98.0%)

• Cluster 1
– Latium et Campania (32.0%)
– Venetia et Histria (14.0%)
– Samnium (11.0%)
– Umbria (10.0%)
– Apulia et Calabria (8.0%)

• Cluster 2
– Pannonia superior (15.0%)
– Dalmatia (11.0%)
– Noricum (10.0%)
– Hispania citerior (7.0%)
– Gallia Narbonensis (6.0%)

• Cluster 3
– Dacia (24.0%)
– Pannonia inferior (17.0%)
– Moesia inferior (15.0%)
– Syria (6.0%)
– Numidia (6.0%)
– Pannonia superior (5.0%)

• Cluster 4
– Germania superior (24.0%)
– Mauretania Caesariensis (11.0%)
– Asia (11.0%)
– Etruria (11.0%)
– Galatia (9.0%)
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Figure 1: Experimental results when inferring both \ and 𝑝 jointly. The AUC-ROC is as good as when 𝑝 is provided to the model.
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