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ABSTRACT
Most real-world networks evolve over time. Existing literature
proposes models for dynamic networks that are either unlabeled
or assumed to have a single membership structure. On the other
hand, a new family of Mixed Membership Stochastic Block Mod-
els (MMSBM) allows to model static labeled networks under the
assumption of mixed-membership clustering. In this work, we pro-
pose to extend this later class of models to infer dynamic labeled
networks under a mixed membership assumption. Our approach
takes the form of a temporal prior on the model’s parameters. It
relies on the single assumption that dynamics are not abrupt. We
show that our method significantly differs from existing approaches,
and allows to model more complex systems –dynamic labeled net-
works. We demonstrate the robustness of our method with several
experiments on both synthetic and real-world datasets. A key inter-
est of our approach is that it needs very few training data to yield
good results. The performance gain under challenging conditions
broadens the variety of possible applications of automated learning
tools –as in social sciences, which comprise many fields where
small datasets are a major obstacle to the introduction of machine
learning methods.
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Figure 1: Users’ attachment to groups can vary over time —
A music listener could cyclically prefer Rock, Jazz or Pop
music (top), or listen to either of these without any specific
pattern (bottom). For 200 epochs containing only 5 observa-
tions each, our approach (in red) infers any smooth dynamic
membership pattern, and does it more accurately than static
models (in green [9]) and models that consider each time
slice independently (in blue [22]).

1 INTRODUCTION
Dynamic networks are powerful tools to visualize and model inter-
actions between different entities that can evolve over time. The
network’s nodes represent the interacting entities, and ties between
these nodes represent an interaction. In many real-world situations,
ties strength can vary over time –on music streaming websites for
instance, users’ affinity with various musical genres vary over time
[14, 23]. The network is said dynamic.

Now, every interaction does not have the same significance.
A music listener might like both Rock and Jazz, but favor one
over the other. This user’s ties to musical genres do not have the
same intensity; each tie is associated to a number, representing the
strength of the interaction. The network is said to be dynamic and
valued.

Finally, simple dynamic valued networks might not be fit to
grasp the complexity of a given situation. A music listener may
have different opinions on musical genres; they can like it, dislike it,
be bored of it, prefer to listen to some only in the morning, at night,
etc. Each of these relations can be represented by their own tie in
the network, each associated to their own strength. The network is
said to be dynamic, valued and labeled.
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Such networks are high-dimensional objects, whose direct infer-
ence is a difficult problem. Several ways to achieve this task have
been proposed; the Stochastic Block Models (SBM) family is one of
the most popular approaches [5, 10, 12]. The underlying assump-
tion is that some sets of nodes behave in a similar way regarding
other sets of nodes. They can be grouped in a cluster; instead of
modeling every edge for every node in a network, only the edges
between clusters are modeled, making the inference task much
more tractable. Each cluster is associated to labeled edges, and each
node is associated to a cluster. A variant of SBM that allows more
expressive power is called the Mixed-Membership SBM (MMSBM),
where each node can belong to several clusters with different pro-
portions [2, 9, 22, 24]. A major advantage of the SBM family is that
they yield readily interpretable results (interpretable clusters), un-
like most existing neural-network approaches for labeled networks
[6].

The goal of this paper is to infer networks that are dynamic,
valued and labeled by using a mixed-membership SBM. Our con-
tribution consists in the extension of a broad class of MMSBM by
using a temporal Dirichlet prior. We first conduct a careful review
of dynamic network inference literature, and we could not find any
prior work addressing the task at hand. Although some previous
works tackle similar problems, they are not fit for the task at hand.
Besides, our approach is conceptually much simpler than those pro-
posed in the literature. Last but not least, our dynamic extension is
readily plugable into most existing MMSBM for labeled and valued
networks.

We develop an EM optimization algorithm that scales linearly
with the size of the dataset, demonstrate the effectiveness of our
approach on both synthetic and real-world datasets, and further
detail a possible application scenario.

2 BACKGROUND
2.1 Notations
We consider a network of 𝐼 nodes and 𝑂 labels. All the clustering
models discussed in this section can be represented by a restricted
set of parameters: a matrix 𝜃 (𝑡) ∈ R𝐼×𝐾 accounts for the mem-
bership of each of 𝐼 nodes to each of 𝐾 possible clusters, and a
block-interaction matrix 𝑝 (𝑡) ∈ R𝐾×𝐾×𝑂 represents the probabil-
ity for each of 𝐾 clusters to yield each of 𝑂 labels. Both 𝜃 (𝑡) and
𝑝 (𝑡) can vary over time; in the following, this temporal dependence
is implicit (𝑥 (𝑡) := 𝑥) unless specified otherwise. The network is
said to be unlabeled when𝑂 = 1, and binary (as opposed to valued)
if an edge can only exist or not exist.

2.2 Dynamic unlabeled networks -
Single-membership

Single-membership SBMs consider a membership matrix such as
𝜃 ∈ {0; 1}𝐼×𝐾 : each membership vector equals 1 for one cluster,
and 0 everywhere else –“hard” clustering in the literature. In [28,
29], the authors proposed to model a binary unlabeled dynamic
network using a label-switching inference method, optimized by a
Sequential Monte Carlo algorithm [13]. Both the membership and
the interaction matrices can vary over time, thus supposing two
independent underlying Markov processes [13].

In [21, 30], the authors propose to model a binary dynamic and
unlabeled network. The cluster interaction matrix 𝑝 can vary over
time while keeping the memberships 𝜃 static. The entries of 𝑝 are
drawn from a Dirichlet distribution and expressed as a Chinese
Restaurant Process. This process converges to a Dirichlet distri-
bution, and allows to infer a potentially infinite number of clus-
ters. This model is therefore non-parametric and inferred using an
MCMC algorithm.

A conceptually novel way of modeling dynamic unlabeled net-
works under the single membership assumption has been proposed
in [16, 17]. The authors propose to model the cluster interaction and
membership matrices as Poisson processes, that explicitly represent
the continuous temporal dependency without slicing the dataset
into episodes. The method allows to infer varying membership and
interaction matrices for dynamic binary or valued networks, but
their results have shown that allowing both to vary simultaneously
leads to identifiability and label switching issues [8]. This conclu-
sion seems reasonable, given none of these SBM algorithms can
reach a global optimum of the likelihood function. A model where
both 𝜃 and 𝑝 can vary over time is more likely to get stuck into a
local optimum.

Finally, we mention the existence of SBM variants that account
for dynamic degree-correction [25] or that enforce a scale-free
characteristic [26].

All these methods consider unlabeled networks, and consider a
hard clustering which does not allow for as much expressive power
as the Mixed-Membership approaches.

2.3 Dynamic unlabeled networks -
Mixed-membership

Mixed-membership SBMs consider a membership matrix such as
𝜃 ∈ R𝐼×𝐾 , where each membership vector 𝜃𝑖 has a 𝐿1 norm of 1.
Literature also refer to it as “soft” clustering.

Similar to [21, 30], a method for inferring dynamical binary un-
labeled networks has been proposed in [7]. The membership vector
of each piece of information is drawn from a Chinese Restaurant
Process (CRP) according to the number of times a node has already
been associated to each cluster before. The process yields a distri-
bution over an infinity of available clusters. The formulation as a
CRP arises naturally, because the prior on membership vectors is
typically a Dirichlet distribution –a CRP naturally converges to a
draw from a Dirichlet distribution [3]. The block-interaction matrix
𝑝 does not vary over time. The article shows a complexity analysis
that suggest the methods runs with a complexity of O(𝑁 2) which
makes it unfit for large-scale real-world applications.

The work the most closely related to ours is [27]. This seminal
work proposed the dMMSB as a way to model dynamic binary
unlabeled networks using a variational algorithm [15]. To do so,
the authors modify the original MMSBM [2] to consider a logistic
normal distribution as a prior on the membership vectors 𝜃𝑖 . This
choice allows to model correlations between membership vectors’
evolution [1]. The membership vectors are then embedded in a
state space model, that is a space where one can define a linear
transition between two time points for a given variable. The au-
thors define such trajectory for the membership vectors as a linear
function of the previous time point. The trajectory is estimated
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and smoothed using a Kalman Filter. This approach is the most
closely related to ours, as it models the temporal dependency using
a prior distribution over memberships, noted 𝑃 (𝜃 ). [27] has been
extended to consider 𝑃 (𝜃 ) as a logistic normal mixture prior [11],
which improves its expressive power.

However, this model and related extensions are not fit for the
task at hand. First, it considers unlabeled and binary networks [15],
and extension to labeled and valued networks, if possible, is not
trivial. The proposed optimization algorithm requires a loop until
convergence at each EM iteration, making it unable to handle large
datasets. Besides, the clusters interaction matrix 𝑝 must remain
static for the approach to work, which we alleviate here. And most
importantly, is assumes a linear transition between time steps in
the state space, while we do not assume any kernel function in our
proposed approach.

2.4 Static labeled networks -
Mixed-membership

Recent years saw a rise of Bayesian methods for inferring static
valued labeled networks using MMSBM variants [9, 18–20, 22].
Here, nodes are associated a type 𝑎; each type of node has its own
layer in a multipartite network, and its associated set of available
clusters through a membership matrix 𝜃𝑎 . Nodes from one layer
belong to every cluster corresponding to this layer with mixed
proportions. The interaction between clusters of all layers then
yields a distribution over 𝑂 possible output labels. This results in a
static MMSBM for labeled networks. Our contribution extends all
of [9, 18–20, 22] to the dynamic case. These works will be further
detailed in Section 3.

Note that in [22], the authors consider a temporal slicing of the
data and consider each slice as independent from the others; a
time slice is considered as a node in a tripartite network. We will
compare our approach to this modeling later.

We use these works as a base model, that we couple to a dynamic
prior distribution on parameters. Our work focuses on making the
prior probability of both 𝜃 and 𝑝 time-dependent, in order to model
these parameters dynamics. We provide a ready-to-use temporal
plug-in for each of the works presented in this section. It applies to
dynamical, valued and labeled networks in a mixed-membership
context, and inference is conducted with a scalable variational EM
algorithm.

3 DYNAMIC LABELED MMSBM
3.1 Base model
For clarity, we choose to consider the simplest form of a labeled
MMSBM: each of 𝐼 nodes is associated to each of 𝐾 clusters in
mixed proportions, and each of 𝐾 clusters is in turn associated
to 𝑂 labels (SIMSBM(1) in [20]). As shown in [20], our demon-
stration on SIMSBM(1) trivially extends to [9] (SIMSBM(1,1)) [22]
(SIMSBM(2,1)) and [19] (SIMSBM(2)) –and in general any model
formulated as SIMSBM(x,y,...).

We consider a set of 𝐼 nodes that can be associated to𝑂 possible
labels on a discrete time interval, or epoch, written 𝑡 . We assume
that, at each time step, each of 𝐼 nodes belongs to a mixture of 𝐾
available clusters, each of which are in turn yield a probability dis-
tribution over 𝑂 labels. The membership of each of 𝐼 nodes to each

of the 𝐾 possible clusters at time 𝑡 is encoded in the membership
matrix 𝜃 (𝑡 ) ∈ R𝐼×𝐾 . One vector 𝜃 (𝑡 )

𝑖
represents the probability that

𝑖 belongs to any of the 𝐾 clusters at time 𝑡 , and is normalized as:∑︁
𝑘∈𝐾

𝜃
(𝑡 )
𝑖,𝑘

= 1 ∀𝑖, 𝑡 (1)

The probability for each of 𝐾 clusters to be associated to each of
𝑂 labels at time 𝑡 is encoded in the matrix 𝑝 (𝑡 ) ∈ R𝐾×𝑂 . An entry
𝑝
(𝑡 )
𝑘

(𝑜) represents the probability that cluster 𝑘 is associated to
label 𝑜 at time 𝑡 , and thus is normalized as:∑︁

𝑜∈𝑂
𝑝
(𝑡 )
𝑘

(𝑜) = 1 ∀𝑘, 𝑡 (2)

Finally, the probability that a node 𝑖 is associated to label 𝑜 at time 𝑡
(i.e. the probability of an edge between 𝑖 and 𝑜 at time 𝑡 ) is written:

𝑃 (𝑖 → 𝑜 |𝑡) =
∑︁
𝑘∈𝐾

𝜃
(𝑡 )
𝑖,𝑘
𝑝
(𝑡 )
𝑘

(𝑜) (3)

Given a set 𝑅◦ of observed triplets (𝑖, 𝑜, 𝑡), the model’s posterior
distribution can be written [9, 20]:

𝑃 (𝜃, 𝑝 |𝑅◦) ∝ 𝑃 (𝑅◦ |𝜃, 𝑝)
∏
𝑡

𝑃 (𝜃 (𝑡 ) )𝑃 (𝑝 (𝑡 ) ) (4)

=
∏

(𝑖,𝑜,𝑡 ) ∈𝑅◦

∑︁
𝑘∈𝐾

𝜃
(𝑡 )
𝑖,𝑘
𝑝
(𝑡 )
𝑘

(𝑜)
∏
𝑡

(∏
𝑖

𝑃 (𝜃 (𝑡 )
𝑖

)
∏
𝑘

𝑃 (𝑝 (𝑡 )
𝑘

)
)

Now, before we describe the optimization procedure, we must
choose the priors 𝑃 (𝜃 (𝑡 ) ) and 𝑃 (𝑝 (𝑡 ) ).

3.2 Simple Dynamic prior
We formulate the prior distribution over 𝜃 (𝑡 ) and 𝑝 (𝑡 ) under a
single assumption: the parameters at a given time do not vary
abruptly at small time scales. It means an entry 𝜃 (𝑡1 )

𝑖,𝑘
should not

differ significantly from 𝜃
(𝑡2 )
𝑖,𝑘

for every 𝑡2 close enough to 𝑡1. The
entries close to a reference time are called temporal neighbours.

Our a priori knowledge on each entry 𝜃 (𝑡 )
𝑖

and 𝑝 (𝑡 )
𝑘

is that they
should not differ significantly from their temporal neighbours. This
is a fundamental difference with [27], where the next parameters
values are estimated using from a Kalman Filter that only consid-
ers the previous time step. Moreover, the authors assume a linear
transition function, while we do not make such hypothesis. An il-
lustration of the proposed approach is given Fig. 2, where the prior
probability of a membership over time depends on its temporal
neighbours.

3.2.1 Dirichlet distribution. Since each entry 𝜃 (𝑡 )
𝑖

and 𝑝 (𝑡 )
𝑘

is nor-
malized to 1, we consider a Dirichlet distribution as a prior, which
naturally yields normalized vectors such that

∑
𝑛 𝑥𝑛 = 1. It reads:

𝐷𝑖𝑟 (𝑥 |𝛼) = 1
𝐵(𝛼)

∏
𝑛

𝑥
𝛼𝑛−1
𝑛 (5)

where 𝐵(·) is the multivariate beta function. In Eq. 5, the vector 𝛼
is called the concentration parameter and must be provided to the
model. This parameter defines the mode and the variance of the
Dirichlet distribution.

We consider a concentration parameter as 𝛼 = 1 + 𝛽𝛼0, so that
when 𝛽 = 0 we recover a uniform prior over the simplex, and 𝛽 ≥ 0
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Figure 2: Prior probability’s variance on memberships at all
times according to the temporal neighbourhood —Variance
of the prior over a membership entry (filled curves, we rep-
resented 3 such entries as illustration) as a function of time,
given some temporal neighbours (black dots). This illustra-
tion considers an averaging kernel as 𝜅 (𝑡, 𝑡 ′) = 1

|𝑡−𝑡 ′ | . When

inferring a parameter 𝑥 (𝑡 ) at a time 𝑡 , the variance of its
prior probability 𝑃 (𝑥 (𝑡 ) ) depends on 𝑡 relative to the tempo-
ral neighbours. Here for instance, the variance is null at 𝑡 = 2
because 𝜅 (𝑡, 𝑡 ′) diverges, and so does 𝛼 (𝑡 ) , hence the variance
collapsing to 0.

so that the prior has a unique mode. The most frequent value drawn
from Eq.5 (or mode) isM(𝑥𝑛) = 𝛼𝑛−1∑′

𝑛 (𝛼 ′
𝑛−1)

=
𝛼0,𝑛∑′
𝑛 𝛼0,𝑛

. We recover a

uniform prior for 𝛽 = 0; the variance vanishes with 𝛽 ≫ 1 as 1
𝛽
. The

effect of various values of 𝛽 on the prior distribution is illustrated
in Fig. 3.

3.2.2 Simple Dynamic prior’s mode. Our single constraint is that
𝜃
(𝑡 )
𝑖

and 𝑝 (𝑡 )
𝑘

do not vary abruptly over small time scales. To do so,
we define their prior probability’s mode with respect to close tem-
poral neighbours. The hyper-parameter 𝛽 controls the variance of
the prior –that is, how much our constraint should impact the infer-
ence procedure. We express the Simple Dynamic prior parameters
for 𝜃 (𝑡 )

𝑖
as:

𝛼
(𝑡,𝜃 )
𝑖,𝑘

= 1 + 𝛽 ©­«
∑
𝑡 ′≠𝑡 𝜅 (𝑡, 𝑡 ′)𝜃

(𝑡 ′ )
𝑖,𝑘∑

𝑡 ′≠𝑡 𝜅 (𝑡, 𝑡 ′)
ª®¬︸                     ︷︷                     ︸

⟨𝜃 (𝑡 )
𝑖,𝑘

⟩

(6)

where 𝜅 (𝑡, 𝑡 ′) is a weight function, and 𝛼 (𝑡,𝜃 ) corresponds to the
concentration parameter for 𝜃 at time 𝑡 . In following experiments,
we define the weight function as 𝜅 (𝑡, 𝑡 ′) =

𝑁𝑡 ′
|𝑡−𝑡 ′ | , where 𝑁𝑡 ′ is

the number of observations made at time 𝑡 ′. This way, temporal
neighbours’ influence decrease as the inverse of temporal distance.
We illustrate the influence of this particular kernel function on the
prior probability on membership at all times in Fig. 2. In particular
we see that with this expression, the prior probability variance goes
to 0 when the considered time it very close to a temporal neighbour.

Figure 3: Prior probability on a membership vector for var-
ious values of 𝛽 according to temporal neighbourhood —
Darker means higher probability. Projected on a simplex
tri-space (each of 3 axes ranges from 0 to 1). The white dots
represent the temporal neighbours of the considered 3D vec-
tor. Their average is given as ⟨𝜃⟩ using a uniform weight
function 𝜅 (𝑡, 𝑡 ′) for illustration purpose. 𝛽 controls the vari-
able’s prior variance around its neighbours.

The mode of the prior is then the average value of its the tem-
poral neighbours weighted by 𝜅 (𝑡, 𝑡 ′), noted ⟨𝜃 (𝑡 )

𝑖,𝑘
⟩. Note that this

holds because
∑
𝑘 ⟨𝜃

(𝑡 )
𝑖,𝑘

⟩ = 1 ∀𝑖, 𝑡 . Besides, the prior variance is a
decreasing function of 𝛽 ; when 𝛽 = 0 the prior is uniform over the
simplex, and when 𝛽 → ∞ the variance goes to 0, as illustrated
Fig. 3. The same reasoning holds for 𝑝 (𝑡 )

𝑘
, with prior parameters

𝛼
(𝑡,𝑝 )
𝑘,𝑜

= 1 + 𝛽 ⟨𝑝 (𝑡 )
𝑘

(𝑜)⟩, as well as for any other parameter in
[9, 19, 20, 22].

3.2.3 Priors expression. Finally, we give the final log-priors on 𝜃 (𝑡 )
𝑖

and 𝑝 (𝑡 )
𝑘

:

𝑃 (𝜃 (𝑡 )
𝑖

|{𝜃 (𝑡
′ )

𝑖,𝑘
}𝑡 ′≠𝑡 ) ∝

∏
𝑘

𝜃
(𝑡 )
𝑖,𝑘

𝛽 ⟨𝜃 (𝑡 )
𝑖,𝑘

⟩
(7)

𝑃 (𝑝 (𝑡 )
𝑘

(𝑜) |{𝑝 (𝑡
′ )

𝑘
(𝑜)}𝑡 ′≠𝑡 ) ∝

∏
𝑜

𝑝
(𝑡 )
𝑘

(𝑜)
𝛽 ⟨𝑝 (𝑡 )

𝑘
(𝑜 ) ⟩

We omitted the normalisation factor for clarity –it does not influ-
ence the inference procedure.

3.3 Inference
3.3.1 E step. We develop an EM inference procedure for maximiz-
ing the log-posterior distribution defined Eq.8. The expectation
step computes the expected probability of a latent variable (here a
cluster 𝑘) being chosen given each entry of 𝑅◦. Since such latent
variables do not appear in the priors expressions, the expectation
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step remains unchanged by the introduction of the Simple Dynamic
Priors; in general, prior distributions do not intervene in the com-
putation of the expectation step [4]. The E step for such labeled
networks has already been discussed on several occasions [9, 19, 22].
It can be derived as:

log 𝑃 (𝜃, 𝑝 |𝑅◦) ∝ log 𝑃 (𝑅◦ |𝜃, 𝑝)
∏
𝑡

∏
𝑖

𝑃 (𝜃 (𝑡 )
𝑖

)
∏
𝑘

𝑃 (𝑝 (𝑡 )
𝑘

)

=
∑︁

(𝑖,𝑜,𝑡 ) ∈𝑅◦
log

∑︁
𝑘∈𝐾

𝜃
(𝑡 )
𝑖,𝑘
𝑝
(𝑡 )
𝑘

(𝑜) (8)

+
∑︁
𝑡

∑︁
𝑖

log 𝑃 (𝜃 (𝑡 )
𝑖

)
∑︁
𝑘

log 𝑃 (𝑝 (𝑡 )
𝑘

)

≥
∑︁

(𝑖,𝑜,𝑡 ) ∈𝑅◦

∑︁
𝑘∈𝐾

𝜔
(𝑡 )
𝑖,𝑜

(𝑘) log
𝜃
(𝑡 )
𝑖,𝑘
𝑝
(𝑡 )
𝑘

(𝑜)

𝜔
(𝑡 )
𝑖,𝑜

(𝑘)

+
∑︁
𝑡

∑︁
𝑖

log 𝑃 (𝜃 (𝑡 )
𝑖

)
∑︁
𝑘

log 𝑃 (𝑝 (𝑡 )
𝑘

)

In Eq.8, we introduced a proposal distribution 𝜔 (𝑡 )
𝑖,𝑜

(𝑘), that rep-
resents the probability of one cluster allocation 𝑘 given the ob-
servation (𝑖, 𝑜, 𝑡). The last line followed from Jensen’s inequality
assuming that

∑
𝑘 𝜔

(𝑡 )
𝑖,𝑜

(𝑘) = 1. We notice that Jensen’s inequality
holds as an equality when:

𝜔
(𝑡 )
𝑖,𝑜

(𝑘) =
𝜃
(𝑡 )
𝑖,𝑘
𝑝
(𝑡 )
𝑘

(𝑜)∑
𝑘 ′ 𝜃

(𝑡 )
𝑖,𝑘 ′
𝑝
(𝑡 )
𝑘 ′

(𝑜)
(9)

which provides us with the expectation of the latent variable 𝑘
given an observation (𝑖, 𝑜, 𝑡) ∈ 𝑅◦, written 𝜔 (𝑡 )

𝑖,𝑜
(𝑘).

Using this expression, we can rewrite the log-likelihood log 𝑃 (𝑅◦ |𝜃, 𝑝)
as [4, 9, 20]:

log 𝑃 (𝑅◦ |𝜃, 𝑝) =
∑︁

(𝑖,𝑜,𝑡 ) ∈𝑅◦

∑︁
𝑘∈𝐾

𝜔
(𝑡 )
𝑖,𝑜

(𝑘) log
𝜃
(𝑡 )
𝑖,𝑘
𝑝
(𝑡 )
𝑘

(𝑜)

𝜔
(𝑡 )
𝑖,𝑜

(𝑘)
(10)

3.3.2 M step. Taking back the first line of Eq.8 and substituting
with Eq.7 and Eq.10, we get an unconstrained expression of the
posterior distribution. We introduce Lagrange multipliers to ac-
count for the constraints of Eq.1 (𝜙 (𝑡 )

𝑖
) and Eq.2 (𝜓 (𝑡 )

𝑖
), and finally

compute the maximization equations with respect to the model’s

parameters. Starting with the membership matrix entries 𝜃 (𝑡 )
𝑖,𝑘

:

𝜕

(
log 𝑃 (𝜃, 𝑝 |𝑅◦) − ∑

𝑖′,𝑡 ′ 𝜙
(𝑡 ′ )
𝑖′ (∑𝑘 ′ 𝜃 (𝑡 ′ )𝑖′,𝑘 ′

− 1)
)

𝜕𝜃
(𝑡 )
𝑖,𝑘

= 0

↔
∑︁

𝑜∈𝜕 (𝑖,𝑡 )

𝜔
(𝑡 )
𝑖,𝑜

(𝑘)

𝜃
(𝑡 )
𝑖,𝑘

+
𝛽 ⟨𝜃 (𝑡 )

𝑖,𝑘
⟩

𝜃
(𝑡 )
𝑖,𝑘

− 𝜙 (𝑡 )
𝑖

= 0

↔
∑︁

𝑜∈𝜕 (𝑖,𝑡 )
𝜔
(𝑡 )
𝑖,𝑜

(𝑘) + 𝛽 ⟨𝜃 (𝑡 )
𝑖,𝑘

⟩ = 𝜙 (𝑡 )
𝑖
𝜃
(𝑡 )
𝑖,𝑘

↔
∑︁

𝑜∈𝜕 (𝑖,𝑡 )

∑︁
𝑘

𝜔
(𝑡 )
𝑖,𝑜

(𝑘)︸        ︷︷        ︸
=1 (Eq.9)

+𝛽
∑︁
𝑘

⟨𝜃 (𝑡 )
𝑖,𝑘

⟩︸     ︷︷     ︸
=1 (Eq.1)

= 𝜙
(𝑡 )
𝑖

↔
∑
𝑜∈𝜕 (𝑖,𝑡 ) 𝜔

(𝑡 )
𝑖,𝑜

(𝑘) + 𝛽 ⟨𝜃 (𝑡 )
𝑖,𝑘

⟩
𝑁𝑖,𝑡 + 𝛽

= 𝜃
(𝑡 )
𝑖,𝑘

(11)

where 𝜕(𝑖, 𝑡) = {𝑜 | (𝑖, ·, 𝑡) ∈ 𝑅◦} is the subset of labels associated to
both 𝑖 and 𝑡 , and 𝑁𝑖,𝑡 = |𝜕(𝑖, 𝑡) | is the size of this set. Note that for
𝛽 = 0 we recover the M-step of standard static MMSBM models
[9, 19, 20, 22].

The derivation of the M-step for the entries 𝑝 (𝑡 )
𝑘

(𝑜) is identical
and yields :

𝑝
(𝑡 )
𝑘

(𝑜) =
∑

(𝑖,𝑡 ) ∈𝜕𝑜 𝜔
(𝑡 )
𝑖,𝑜

(𝑘) + 𝛽 ⟨𝑝 (𝑡 )
𝑘

(𝑜)⟩∑
(𝑖,𝑜,𝑡 ) ∈𝑅◦ 𝜔

(𝑡 )
𝑖,𝑜

(𝑘) + 𝛽
(12)

3.4 Discussion
3.4.1 Plug-in for existing models. Using SDSBM as a temporal ex-
tension in existing MMSBM models requires very few changes. In
[9, 19, 20, 22], its introduction boils down to adding a term 𝛽 ⟨𝑥⟩ to
the numerator of maximization equations, and the corresponding
normalizing term 𝛽 to the denominator. This way, our approach
is ready-to-use to make these models for for modelling dynamic
networks.

3.4.2 Flexible dynamic modeling. The prior allows to consider that
some parameters are dynamic and that others are not. For instance,
when several membership matrices are involved, as in [9, 20, 22]),
setting 𝛽 = 0 for some makes them time-invariant (or universal).
The Simple Dynamic prior also allows to choose whether the block-
interaction tensor 𝑝 is dynamic. Moreover, 𝛽 does not have to be
the same for every membership matrix, or even every entry 𝑖 of
each of them. Finally, 𝛽 itself can vary over time. To summarize, 𝛽
allows to control the temporal scale over which parameters may
vary. This allows to jointly model universal parameters (𝛽 = 0) and
dynamical ones (𝛽 ≠ 0).

3.4.3 Tunable temporal dependence. Finally, the choice of the av-
eraging kernel function 𝜅 (𝑡, 𝑡 ′) is important. It allows to choose
the range over which the inference of a variable should rely on its
temporal neighbours. A formulation as the inverse of time differ-
ence seems relevant: the weight of a neighbour appearing at a time
𝛿𝑡 later should diverge as 𝛿𝑡 → 0, so that continuity is ensured.
Besides, one could control the smoothness of the curve with respect
to time by tuning the weight function as 𝜅 (𝑡, 𝑡 ′) = 𝑁𝑡 ′

|𝑡−𝑡 ′ |𝑎 where
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Figure 4: Results on synthetic data — (a.) SDSBM retrieves
the correct dynamic memberships and is little influenced
by the data slicing. (b.) SDSBM works well on tiny datasets.
(c.) SDSBM retrieves dynamic memberships in challenging
situations.

𝑎 = 1, 2, ... for instance, where 𝑁𝑡 ′ is the number of observations
in the time slice 𝑡 ′. Overall, the Simple Dynamic prior works by
inferring the variables using both microscopic and mesoscopic tem-
poral scales. If a time slice 𝑡 has few observations but some of its
neighbours have a greater number of them, learning the parameters
at 𝑡 is helped mostly by the population of its closest ( 1

|Δ𝑡 | ) and most
populated (𝑁𝑡 ′ ) neighbours, and less influenced by further and less
populated epochs. This is what is illustrated in Fig. 2.

4 EXPERIMENTS
4.1 Synthetic data
In this section, we develop several situations in which our method
(abbreviated SDSBM for Simple DynamicMMSBM) could be useful1.
Experiments are run for 𝐼 = 100, 𝐾 = 3 and 𝑂 = 3, which are
standard testing parameters in the literature of dynamic networks

1Code and data available at https://anonymous.4open.science/r/SDSBM-26DC

inference [7, 16]. We choose to infer a dynamic membership matrix
𝜃 (𝑡 ) and to provide a universal block-interaction matrix 𝑝 ∀𝑡 . Note
that the model yields good performances when 𝑝 also has to be
inferred, but due to identificability and label-switching issues raised
in [16], there is not unbiased way to assess the correctness of the
inferred memberships values. Additional experiments showed that
inferring jointly 𝑝 and 𝜃 yields the same prediction accuracy.The
expression we use for this matrix 𝑝 is given Eq.13.We systematically
test two variation patterns for 𝜃 : a sinusoidal pattern (Fig. 1-top)
and a broken-line pattern (Fig. 1-bottom). Each pattern is generated
with different coefficient for each item; the memberships still sum
to 1 at all times.

𝑝 =


1 − 𝑠 𝑠 0
0 1 − 𝑠 𝑠

𝑠 0 1 − 𝑠

 (13)

To the best of our knowledge, the only attempt to model dy-
namic parameters in labeled valued and dynamic networks using a
MMSBM is [22]. In this work, each epoch is modeled independently
from the others. We refer to this baseline as the “No coupling” or
“NC” baseline. For reference, we also compare to a baseline that
does not consider the temporal dimension and infers a single uni-
versal value for each variable (SIMSBM(1)) [20]. It has already been
assessed that MMSBMs typically outperform state of the art models
(NMF, TF, KNN, etc.) in [9] and [20]. Such study is not repeated
in the present article, for being out of the scope of our demonstra-
tion. We recall that we purposely chose the simplest form of
MMSBM for clarity; the reported results may therefore be poor
in absolute, but underline an improvement over equally simple
models (NC and SIMSBM(1)) brought by our Simple Dynamic prior
approach.

We systematically perform a 5-folds cross validation. The model
is trained on 80% of the data, 𝛽 is tuned using 10% as a validation set,
and the model is evaluated on the 10% left. We choose as metrics
the AUC-ROC and the RMSE on the real values of 𝜃 (black line in
Fig. 1). The procedure is repeated 5 times; the error bars reported
in the experimental results represent the standard error over these
folds.

4.1.1 SDSBM unveils complex temporal patterns. In Fig. 4a., we con-
sider 1 000 observations for each item 𝑖 ∈ 𝐼 and vary the number of
epochs from 10 to 1 000. In the expression of 𝑝 , 𝑠 is set to 0.05. For
both the sinusoidal and line-broken memberships, the model shows
better predictive performances (in terms of AUC ROC) than the
proposed baselines. Interestingly, the SDSBM performances remain
stable as the number of epochs increases unlike the NC baseline,
which means it alleviates a bias of the temporal modeling proposed
in [22]. The RMSE with respect to the true parameters remains
low over the whole range of tested number of epochs. The RMSE
increases as the number of epochs grows because the number of
parameters to estimate increases with it; this makes the inference
more subject to local variations, which in turns mechanically in-
creases the RMSE. Overall, SDSBM recovers dynamic variations of
the membership vectors with a good performance; a sample of the
inferred dynamic memberships is shown Fig. 1.

4.1.2 SDSBM works with little data. A major problem that arises
when considering temporal data is the scarcity of observations,

https://anonymous.4open.science/r/SDSBM-26DC
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because slicing implies reducing the number of observations in
each slice. This concern largely arises in social sciences, where
data retrieval cannot be automated and requires tedious human
labor. Here, we demonstrate that our method works in challenging
conditions, when data is scarse. In Fig. 4b., we vary the number of
observations available for each item from 100 to 10.000, distributed
over 100 epochs. Thus, in the most challenging situation, there
is only one observation per epoch used to determine 𝐼 dynamic
memberships over 3 clusters. In the expression of 𝑝 , 𝑠 is set to
0.05. We see Fig. 4b. that for both patterns, the predictive power
of SDSBM remains high in such conditions. Moreover, the RMSE
on the true dynamic memberships in this case is fairly low, and
decreases rapidly as the number of observations increases. When
the number of observations is high, the “no coupling” baseline
[22] reaches the performances of SDSBM. This is because as the
number of observations in each slice goes to infinity, the models
need less to rely on temporal neighbours. However, even for 10.000
observations per item (100 observations per epoch), SDSBM yields
better results. As an illustration, the results in Fig. 1 have been
obtained using only 5 observations per epoch.

4.1.3 SDSBM handles highly stochastic interaction patterns. Finally,
we control the deterministic character of the block-interaction ma-
trix 𝑝 by varying 𝑠 . We express such character as the mean en-
tropy of 𝑝 ⟨𝑆 (𝑝)⟩ with respect to its possible outputs: ⟨𝑆 (𝑝)⟩ =
1
𝐾

∑
𝑘∈𝐾

∑
𝑜 𝑝𝑘 (𝑜) log 𝑝𝑘 (𝑜). The maximum entropy for the pro-

posed expression of 𝑝 is reached for 𝑠 = 0.5. We consider 1 000
observations spread over 100 epochs. We show in Fig. 4c. that the
predictive performance of all three methods drops as the entropy
increases. This is expected, as observations are generated from the
true model with a higher variance; each observation becomes less
informative about the generative process as 𝑠 grows. However, the
RMSE on the real parameters inferred using SDSBM remains low
at the maximum entropy, meaning the model recovers the correct
membership parameters.

4.2 Real-world data
Finally, we demonstrate the validity of our approach on real-world
data to argue for its usefulness and scalability. SDSBM builds on
previous works on labeled MMSBM and shares the same linear com-
plexity O(|𝑅◦ |) with |𝑅◦ | the size of the dataset [9]. For our experi-
ments, we consider the recent and documented datasets from [14].
The Reddit dataset (10.000 users, 984 subreddits they contribute
to, ∼670k observations), the LastFm dataset (980 users, 1000 songs
users listened to, ∼1.3M observations) and the Wikipedia (Wiki)
dataset (8227 users, 1000 pages users edited, ∼157k observations).
The goal is to predict over time what subreddit a user will con-
tribute to, what songs they will listen to, and what Wikipedia pages
they will edit. The Reddit and Wikipedia datasets contain 1 month
of data; we slice them in 1 day long temporal intervals. The LastFm
dataset spans over approximately 5 years; we slice it into periods of
3 days each. In addition, we build an additional dataset (Epi) about
historical epigraphy data 2. The dataset is made of 117.000 latin
inscriptions comprising one or several of 18 social status (slave,
soldier, senator, etc.) and its location as one of 62 possible regions,

2Clauss-Slaby repository, http://www.manfredclauss.de/fr/index.html

Table 1: Numerical results on real-world datasets — Metrics
abbreviations stand for the area under the ROC curve (ROC),
the Average Precision (AP), the Normalized Coverage Error
(NCE). Metrics for models stand for Simple Dynamic SDM
(SDSBM), No Coupling baseline (NC) and the classical static
mixed membership SBM (SIMSBM(1)). Overall, our approach
allows for a higher predictive power.

ROC AP NCE

Ep
i

SDSBM 0.9025(11) 0.3700(17) 0.1151(11)
NC 0.8420(22) 0.3435(36) 0.1582(19)
SIMSBM(1) 0.8597(12) 0.2141(16) 0.1451(13)

La
st
fm

SDSBM 0.8942(8) 0.0168(1) 0.1284(11)
NC 0.8393(5) 0.0157(2) 0.1785(7)
SIMSBM(1) 0.8647(5) 0.0115(2) 0.1493(4)

W
ik
i SDSBM 0.9759(2) 0.0659(9) 0.0459(3)

NC 0.9092(7) 0.0608(10) 0.1195(8)
SIMSBM(1) 0.9576(7) 0.0622(4) 0.0565(8)

R
ed

di
t SDSBM 0.9803(3) 0.4295(54) 0.0312(3)

NC 0.8508(5) 0.3598(17) 0.1846(7)
SIMSBM(1) 0.9798(2) 0.4269(40) 0.0322(3)

along with an estimated datation spanning from 100BC to 400AD.
The goal is to guess the region where a status has been found, with
respect to time. The goal is to recover statuses diffusion in roman
territories. We slice this dataset in epochs of one year each.

Evaluation is again conducted using a 5-folds cross validation
with 80% of training data, 10% of validation data and 10% of testing
data for each fold. For each pair (𝑖, 𝑜𝑡𝑟𝑢𝑒 ) in the test set, we query
the probability for every output 𝑜 given 𝑖 and build the confusion
matrix by comparing them to𝑜𝑡𝑟𝑢𝑒 . In Table 1, we present the results
of our method compared to the proposed baselines for various
metrics: AUC-ROC (ROC), Average Precision (AP) and Normalized
Coverage Error (NCE). The first two metrics evaluate how well
models assign probabilities to observations, and the latter evaluates
the order in which possible outputs are ranked.

Overall, we see that our method exhibits a greater predictive
power, except for the Reddit dataset where the static SBM performs
as well as SDSBM. We explain this by the lack of significant tempo-
ral variation over the considered interval. This could be expected,
since the dataset comprises roughly 80% of repeated actions [14],
meaning that users do not significantly explore new communities
over a month. This result shows that SDSBM also works well in
the static case. On the other datasets, SDSBM performs better of-
ten by a large margin, especially for the ROC-AUC, meaning that
SDSBM is efficient at distinguishing classes from each other. We
also checked that our initial assumption on the smooth temporal
variation of the parameters holds. For every real-world dataset,
the absolute average change in membership between two consecu-
tive time slices is systematically less than 0.005±0.01. The absolute
variation after 10 time slices is less than 0.03±0.04. Therefore the
inferred parameteres do not vary abruptly over time. We recall that
the model used here is deliberately simplistic for demonstration;
low metrics do not means the Simple Dynamic prior does not work,
but instead that it should be coupled to a more complex model (any
of SIMSBM(x,y,...)).

http://www.manfredclauss.de/fr/index.html
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Figure 5: Geographic evolution of status distribution from latin graves (100BC - 500AD) — We applied the SDSBM to the
Epigraphy dataset. We recall that our goal is to predict a roman region (e.g. Illyria, Hispania, etc.) given a status (e.g. Slave,
Senator, etc.) and a year. We plot the temporal evolution of statuses membership to the five manually labeled clusters (in gray).
For clarity, we removed small membership transfers from the data, which explains why the total cluster’s population may vary
from one time to another. This plot allows to visualize some global historical trends about the evolution of the Roman Empire
(e.g. 3rd century crisis, spread of military presence in Europe, Italy demilitarization, etc.).

As an illustration of what SDSBM has to offer, we plot in Fig. 5 a
possible visualization of the memberships evolution in time for the
epigraphy dataset. On the left and on the right, we show the items
that are considered in the visualization. The time goes from left
(100BC) to right (500AD), and the flows represent the membership
transfers between epochs. The grey bars represent the clusters. We
manually annotated them by looking at their composition. From
this figure, we can recover several historical facts: military presence
in Rome was scarce for most of the times considered; Italy concen-
trates less military presence as time goes (due to its spread over
the now extended empire), until the 3rd century crisis that led to
its re-militarization; most of the slaves that have been accorded an
inscription are located in Italia throughout time; the religious func-
tions (Augusti) are evenly spread on the territory at all times; the
libertii (freed slaves) inscriptions are essentially present in Rome
and in Italy, etc. Obviously, dedicated works are needed in order
to support these illustrative claims, and we believe SDSBM can
provide such extended comprehension of these processes.

5 CONCLUSION
We introduced a simple way to model time in dynamic valued and
labeled networks by assuming a dynamic Mixed-Membership SBM.
Our method consists in defining the Simple Temporal prior, ready
to plug into any of a whole class of existing static MMSBMs. Time
is considered under the single assumption that network’s ties do
not vary abruptly.

We assessed the performance of the proposed method by defin-
ing the SDSBM and testing it in several controlled situations on
synthetic datasets. In particular, we show that our prior allows
stable performances with respect to the dataset slicing, and that it
works well under challenging conditions (small amounts of data

or high entropy blocks interaction matrix). We tested SDSBM on
large scale real-world datasets and showed it yields better results
than two proposed baselines. Finally, we illustrate an application
interest on a dataset of Latin inscriptions that indirectly narrates
the evolution of the Roman Empire.

We discussed the advantages of using our approach: uneven
slicing of observations in time, heterogeneous dynamic time-scales,
time-dependent blocks-interaction matrix, and informativeness
of the prior; exploring these directions on real-world data may
help retrieving meaningful clusters on useful applications. On a
further note, we believe that a key interest of our approach is the
small amount of data needed to get satisfactory performances. This
point is fundamental to a number of social sciences, and we believe
our approach could ease the incorporation of automated learning
methods in these fields.
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