Introduction	State of the art	MPDHP 000	Experiments 0000	Real-world application	Conclusion

Multivariate Powered Dirichlet-Hawkes Process

G.Poux-Médard, J. Velcin, S. Loudcher

Université de Lyon, France Lyon 2, ERIC UR 3083

05 April 2023

Julien Velcin Multivariate Powered Dirichlet-Hawkes Process

- Large flows of information on the internet
- Information can be split into clusters
- Two kinds of useful features: text and time
- Interaction between clusters has been little explored, in particular in a *continuous* manner

- Previous work:
 - Combining Dirichlet-Hawkes Process and a simple language model (Du et al., 2015)
 - DHP has been improved with a more flexible prior: PDHP (Poux-Médard et al., 2021)
- Our contribution: Multivariate Powered Dirichlet-Hawkes Process
 - MPDHP: extension of previous work to deal with interacting clusters
 - Systematic test of MPDHP's application domain on synthetic data
 - Case study on real data from Reddit

Figure 1: A Dirichlet Process after 10 steps

Dirichlet-Hawkes Process

State of the art

• Dirichlet-Hawkes Process: history relevance should decay over time

Real-world application

- ightarrow Counts weighted over time as a Hawkes process of intensity $\lambda_c(t)$
- ightarrow Prob. of a cluster depends on its population at a given time

MPDHP

$$DHP(c|t, \lambda_0, \mathcal{H}) = \begin{cases} \frac{\lambda_c(t)}{\alpha_0 + \sum_k \lambda_k(t)} \text{ if } c = 1, ..., K\\ \frac{\lambda_0}{\alpha_0 + \sum_k \lambda_k(t)} \text{ if } c = K+1 \end{cases}$$

Julien Velcin

Conclusion

Multivariate Powered Dirichlet-Hawkes Process

Introduction State of the art MPDHP Experiments Real-world application Conclusion

- Multivariate Powered Dirichlet-Hawkes Process: clusters interact
- \rightarrow Prob. of a cluster also depends on the population of *other* clusters

Julien Velcin

Given a sequence of observations (text,time), find the best possible cluster c_i for each new observation, with:

 $P(\text{cluster}|\text{data}, \text{history } \mathcal{H}) \propto P(\text{data}|\text{cluster}) \cdot P(\text{cluster}|\mathcal{H})$ Likelihood Posterior probability MPDHP prior

Introduction	State of the art	MPDHP ○○●	Experiments 0000	Real-world application	Conclusion
Ontimizat	tion				

- Sequential Monte Carlo algorithm: clusters and point processes intensities are updated as new data is added
- Step 2: params. updated by averaging likelihood-weighted samples
- Runs in $\mathcal{O}(N)$

Introduction	State of the art	MPDHP 000	Experiments ●000	Real-world application	Conclusion
Simulated	l data				

- Simulate a multivariate Hawkes process and associate words drawn from possibly overlapping vocabularies to each event
- Unless specified otherwise: 2 clusters, 20 words per event, drawn from non-overlapping vocabularies of 2000 words each.
- MPDHP coupled to a "Bag-of-words" language model (DirMult)

- Metric: Normalized Mutual Information (NMI)
 - 1 is perfect clustering, 0 is worst clustering
- 100 runs over 5 000 observations per situation
- \rightarrow MPDHP outperforms other priors on both multi and univariate data

Univariate data

Multivariate data

Julien Velcin

Université de Lyon

- MPDHP:
 - Works with 15 words when vocabs do not overlap
 - Works with 25 words when vocabs overlap greatly
 - Is robust against the parameter λ_0 over 5 orders of magnitude

MPDHP works with few information

MPDHP works when several clusters coexist

Julien Velcin

Université de Lyon

- SMC: several run in parallel, survival of the fittest
- $\rightarrow\,$ Few runs needed to get good results
- \rightarrow Few sample values to get good parameters approximation
- → Needs few computational resources (optimized on a processor)

- All 01/2019 posts from worldnews, news, nottheonion, inthenews offbeat, qualitynews, truenews
 - \sim 8 000 posts ; \sim 65 000 tokens over vocab. of 7 000 words

Université de Lyon

- Sample of our results for January 2019
- Uncover relevant topics and their dynamics

Université de Lyon

- Sample of our results for January 2019
- Retrieve the network of topical influence at different times

Université de Lyon

	00		0000	000	•0
Conclusio	n				
 Conclusion Extension of Dirichlet-Hawkes processes to the multivariate case Infers clusters and their dynamic interactions Robust against challenging situations Several coexisting clusters Scarce textual data Few resources needed for a O(N) SMC algorithm Perspectives Improvements Extensions to hierarchical (nested Dirichlet Processes 2) 					
•	 Broad range of a Summary ge Moderation Study the d 	application eneration of online pla ynamics of in	ntforms / Buzz	control	AL

Conclusion

Thanks for your attention!

Slides & paper: https://gaelpouxmedard.github.io/ Code and data: https://github.com/GaelPouxMedard/SIMSBM/

Julien Velcin

Université de Lyon