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The Dirichlet Process is one of the most widely used priors in Bayesian 
clustering. It works by sampling an a priori cluster for a datapoints that come 
in sequential order. The “rich-get-richer” property is key in this process. It 
states that the a priori probability of sampling a given a cluster depends 
linearly on its population. 
However, such hypothesis is not necessarily accurate. Cluster sampling 
probabilities may depend on the number of observations in a nonlinear 
fashion, if they depend on it at all. As an answer to this statement, we derive 
the Powered Dirichlet Process and derive some of its properties (expected 
number of clusters, convergence). Unlike state-of-the-art efforts in this 
direction, this new formulation allows for direct tuning of the importance of 
the “rich-get-richer” hypothesis. From a broader point of view, this work invites 
to rethink some of the most widespread clustering models (LDA, IGMM, …) in 
the light of alternative prior formulations.

Figure 1 – In the vanilla Dirichlet Process, the prior probability of sampling a cluster depends linearly on its 
population. Our formulation relaxes this hypothesis and allows nonlinear dependences by tweaking a single 
hyperparameter r. When r=1, we recover the vanilla Dirichlet Process (rich-get-richer) ; when r<1, populated clusters 
have less chances to get sampled (rich-get-less-richer) ; when r>1, populate clusters have even more chances to get 
sampled (rich-get-more-richer) ; when r=0, the dependence on population disappears (rich-get-no-richer).

Remarks

A generalization of previous works

Dirichlet Processes are convenient priors for clustering streams of data. Each 
new observation is considered sequentially and associated to one cluster among 
an infinity. This choice depends on the cluster’s likelihood times its a priori 
probability of being sampled. Once this observation’s cluster has been sampled, 
its population increases by 1 and the process continues with the next data point. 
In most cases, the a priori probability for a cluster to be sampled is proportional 
to its population; this is the Dirichlet Process.
While being convenient, this implies a strong a priori hypothesis on the data 
generation process; populated clusters tend to be even more populated, or “rich-
get-richer”. Consequently, the number of non-empty clusters grows as the 
logarithm of the number of observations. In many use cases of Dirichlet 
Processes, this is an unreasonable assumption. When clustering a stream of 
news articles, for instance, there is no a priori reason for the number of clusters 
to be limited by a logarithmic growth. On the contrary, an intuitive guess would 
be that new information topics (non-empty clusters) emerge at a constant rate. 
The Uniform Process has been developed as an answer to this problem. Here, 
the probability of sampling any non-empty cluster is proportional to a constant 
i.e. does not depend on its population: rich-get-no-richer.
Now, we argue that there is a range of intermediate hypotheses between the 
Uniform and the Dirichlet Process. Taking back the example of news stream 
clustering, original topics may not emerge at a constant rate. Recurrent topics, 
for instance, can be grouped in a single cluster; however, there is no reason for 
novelty to appear at a logarithmic rate either. The most fit hypothesis may lie 
between Uniform and Dirichlet Processes. This is why we formulate the 
Powered Dirichlet Process for any new observation as follows (full 
demonstration starting from the Dirichlet and Multinomial distributions in the 
main paper):

𝑃(cluster|𝑁, 𝑟) ∝ ቊ
𝑁𝑐

𝑟  for non-empty clusters
𝛼 for any empty cluster

where 𝑁𝑐 is the population of cluster c, 𝛼 the concentration parameter and r a 
hyperparameter. When r=1, this formulation is identical to the Dirichlet Process 
(rich-get-richer). When r=0, this formulation is identical to the Uniform Process 
(rich-get-no-richer). But in between those values lie novel flavours of hypotheses: 
when 0<r<1, rich-get-less-richer, when r>1, rich-get-more-richer, and when r<0, 
poor-get-richer. The implications are illustrated in Figure 1.

a https://gaelpouxmedard.github.io/

Experimental resultsTL;DR
- Dirichlet Processes clustering priors come with a 

questionable “rich-get-richer” hypothesis.

- The Powered Dirichlet Process is the first approach to 
allow for its direct control.

- New data can now be fed to models without the need to 
fine-tune the hyperparameters another time.

- Our work generalizes existing results on convergence and 
expected number of clusters of DP.

- Numerical experiments support our claims that “rich-get-
richer” hypothesis is not always optimal.

- PDP invites to rethink and extend most of existing 
Bayesian clustering methods

Controlling the “Rich-Get-Richer” Assumption in Bayesian Clustering

The concentration parameter 𝛼 is often fine-tuned to get a satisfying number of 
clusters. This ad-hoc practice works for fixed-size datasets but fails as soon as 
new data is added. In the Dirichlet Process, the number of expected clusters 
grows with the number of observations N as 𝛼 ⋅ log(𝑁). Tuning it rescales the 
number of clusters, but does not change the logarithmic dependence on N. 
Therefore, when N grows, 𝛼 must be fine-tuned once again. 
On the contrary, fine-tuning the “rich-get-richer” hypothesis (that is, the 
hyperparameter r) only once is enough, as it changes the dependency of the 
expected number of clusters on the number of observations N.

About 𝜶 

The Dirichlet Process is the base of numerous alternative clustering processes. 
Some modify it to favour the apparition of new clusters by adding a discount 
parameter (Pitman-Yor process) or to allow mixed-membership among clusters 
(Indian buffet process), other combine layers of Dirichlet Processes to get more 
coherent clusters (Hierarchical DP) or to get a tree-like clustering result (Nested 
DP). Other variants such as the Gamma Generalized Process use a different 
approach to favour the apparition of new clusters. But one thing all these 
processes share is their linear dependence on the population of non-empty 
cluster. Due to being based on the Dirichlet Process, our works comes not as a 
replacement for each of them, but as a complement; each can be revisited in the 
light of a nonlinear dependence on clusters’ population.

Other Dirichlet-based processes

Key properties

We derive elementary results on the Powered Dirichlet Process. Full 
demonstrations are presented in the main paper.

Convergence
The resulting distribution of the Powered Dirichlet Process when 𝑁 → ∞ 
can be formulated as 𝑃 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑁 → ∞, 𝑟) (illustrated Figure 2-left):
• 𝑟 = 0: the PDP is by essence a uniform distribution (Uniform Process)
• 𝑟 = 1: the PDP converges to a Dirichlet distribution.
• 0 < 𝑟 < 1: the PDP converges to a uniform distribution.
• 𝑟 > 1: the PDP converges to a Dirac distribution.

Expected number of clusters
The expected number of non-empty clusters of the Powered Dirichlet 
Process when N is finite, noted 𝐸(𝐾|𝑁, 𝑟), is proportional to:

• 𝑟 ≤ 1: 𝐸 𝐾 𝑁, 𝑟 ∝  σ𝑛=1
𝑁 𝑛−

𝑟2+1

2  ≔  𝐻𝑟2+1
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(𝑁)

• 𝑟 ≥ 1: 𝐸 𝐾 𝑁, 𝑟 ∝  σ𝑛=1
𝑁 𝑛−𝑟  ≔  𝐻𝑟(𝑁)

where 𝐻𝑚(𝑛) is the generalized harmonic number. 

From this result, we derive (illustrated Figure 2-right):
• 𝑟 = 1: 𝐸 𝐾 𝑁, 𝑟 ∝ log(𝑁), a standard DP result.

• 𝑟 < 1: 𝐸 𝐾 𝑁, 𝑟 ∝ 𝑁
1−𝑟2
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• 𝑟 > 1: 𝐸 𝐾 𝑁, 𝑟 ∝ 𝜁(
𝑟2+1

2
) where 𝜁(𝑥) is the Riemann zeta function.

Figure 2 – (left) For one run of PDP(r=0,2,N), probability for each cluster (each colour) to be chosen at 
each step. The distribution converges towards a uniform distribution over all clusters 𝑃(

)

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 |𝑟 <

1, 𝑁 → ∞ =
1

𝐾
. (right) Experimental number of clusters (std over 100 runs) and theoretical evolution 

of 𝐸 𝐾 𝑁, 𝑟  (rescaled)

Infinite Gaussian Mixture Model (IGMM) applied to three synthetic and 
three real-world datasets for various iterations of PDP(r).

Discussion and perspectives

The PDP is a generalization of the Dirichlet Process that allows for direct 
control of the “rich-get-richer” hypothesis. Because this is a very common 
assumption, the PDP opens a way to rethink and hopefully revisit existing 
clustering methods under a different light. The scalability of existing 
sequential approaches to data flows is an important point that our method 
offers to solve.
However, there is more to our work. Fine-tuning the “rich-get-richer” 
hypothesis can also be considered a way to control the informativeness of 
clusters’ population in the modelling, that is the informativeness of the 
prior probability as a whole. In Figure 1, the prior probability becomes 
flatter as r diminishes: a priori information is less discriminative. This is 
especially interesting for variants of Dirichlet Process where counts are 
replaced by other quantities. In the Dirichlet-Hawkes Process, Dirichlet-
Counting Process, or other variants where counts are replaced by an 
alternative function, the Powered variant directly controls how much 
importance is given to this information. 
In general, we believe –and hope– that the Powered Dirichlet Process will 
constitute an interesting tool to refine and question the hypotheses made 
in a large part of state-of-the-art clustering methods.
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