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Abstract. The publication time of a document carries a relevant in-
formation about its semantic content. The Dirichlet-Hawkes process has
been proposed to jointly model textual information and publication dy-
namics. This approach has been used with success in several recent works,
and extended to tackle specific challenging problems –typically for short
texts or entangled publication dynamics. However, the prior in its cur-
rent form does not allow for complex publication dynamics. In particular,
inferred topics are independent from each other –a publication about fi-
nance is assumed to have no influence on publications about politics, for
instance.
In this work, we develop the Multivariate Powered Dirichlet-Hawkes Pro-
cess (MPDHP), that alleviates this assumption. Publications about var-
ious topics can now influence each other. We detail and overcome the
technical challenges that arise from considering interacting topics. We
conduct a systematic evaluation of MPDHP on a range of synthetic
datasets to define its application domain and limitations. Finally, we
develop a use case of the MPDHP on Reddit data. At the end of this
article, the interested reader will know how and when to use MPDHP,
and when not to.
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1 Pseudo algorithm

The goal of the SMC algorithm illustrated in Fig. 1 is to jointly infer textual
documents’ clusters and the dynamics associated with them. The references in
the figure correspond to the equations numbering of the main article. The al-
gorithm runs as follows. First, the algorithm computes each cluster’s posterior
probability for a new observation by multiplying the temporal prior on cluster
allocation with the textual likelihood. It results in an array ofK+1 probabilities,
where K is the number of non-empty clusters. A cluster label is then sampled
from this probability vector. If the empty (K + 1)th cluster is chosen, the new
observation is added to this cluster, and its dynamics are randomly initialized
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(i.e. a (K+1)th row and a (K+1)th column are added to the parameters matrix
α). If a non-empty cluster is chosen, its dynamics are updated by maximizing
the new likelihood. The process then goes on to the next observation.

This routine is repeated Npart times in parallel. Each parallel run is referred
to as a particle. Each particle keeps track of a series of cluster allocation hypothe-
ses. After an observation has been treated, we compute the particles likelihood
given their respective cluster allocations hypotheses. Particles that have a like-
lihood relative to the other particles’ one below a given threshold ωthres are
discarded and replaced by a more plausible existing particle.
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Fig. 1. Schematic workflow of the SMC algorithm — For each new observation
from a stream of document, we run steps 1 (sample document’s cluster), 2 (update
sampled cluster’s internal dynamics) and 3 (update particle likeliness) for each particle,
and then discard particles containing the less likely hypothesis on cluster allocation.
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2 Uninformative textual content and entangled dynamics
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Fig. 2. MPDHP handles scarce textual or temporal information — MPDHP
handles challenging cases provided either textual of temporal information is informative
enough (temporal overlap of 0 and textual overlap of 0.7; temporal overlap of 1 and
textual overlap of 0.4), and fails when both are uninformative (overlaps of 1).

In Fig. 2, we plot the results of MPDHP for different values of textual and
temporal overlap. Textual overlap is defined as in the main article. The influence
kernel of cluster c′ on cluster c can be written αc,c′ · κ(t). For each cluster c, we
generate values of αc,c′ so that the overlap between all the functions in the set
{αc,c′ ·κ(t)}c′ equals a given value. The idea is to test whether MPDHP is robust
when clusters have similar dynamics.

Overall, we see that when the textual overlap is small, MPDHP yields good
results independently from the temporal overlap. It means that in this case, the
textual content is enough to differentiate clusters despite their dynamics being
similar. However, as textual content gets less informative (textual overlap ≥
0.6), results are better when the temporal overlap is low. In these cases, textual
information is not enough and MPDHP relies more on temporal data. Overall,
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MPDHP handles challenging cases provided either textual of temporal infor-
mation is informative enough – for instance temporal overlap of 0 and textual
overlap of 0.7, or temporal overlap of 1 and textual overlap of 0.4. It fails when
both are uninformative – for instance, temporal and textual overlaps of 1.

3 Computational needs

1 2 4 8 12 16 20 25

# particles

1
0

1
0
0

1
0
0
0

1
0
0
0
0

1
0
0
0
0
0

#
 s

a
m

p
le

s

0.7 0.82 0.87 0.9 0.91 0.92 0.92 0.93

0.71 0.83 0.86 0.9 0.92 0.92 0.92 0.93

0.73 0.82 0.89 0.9 0.91 0.92 0.92 0.93

0.7 0.83 0.87 0.89 0.91 0.92 0.92 0.93

0.7 0.83 0.86 0.9 0.91 0.92 0.92 0.92

±0.01

±0.02

±0.02

±0.02

±0.02

±0.01

±0.01

±0.02

±0.01

±0.02

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

±0.01

0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

Fig. 3. How complex should the algorithm be — Performance of MPDHP using
different versions of the Sequential Monte-Carlo algorithm. Here, we plot the model’s
performance with respect to the number of sample matrices used to estimate the ker-
nel’s weights αc and the number of particles Npart used for the inference. Overall,
MPDHP functions well with few computational resources.

We estimate how much computational resources we must allocate to MPDHP’s
sequential Monte-Carlo (SMC) inference algorithm in order to obtain good re-
sults. In Fig. 3, we plot the model’s performance against the two main optimiza-
tion parameters –the number of samples matrices and the number of particles.
We recall that the samples matrices are used to infer each value of the kernel
weights matrices for cluster c, noted αc; the more sample matrices, the better
the estimation. The number of particles represent the number of different cluster
allocations hypothesis explored by the SMC algorithm at each step; the more
particles, the more hypotheses are tested simultaneously. Overall, we see that
MPDHP works well with few resources. In our experiments, results do not seem
to improve significantly when using more than 20 particles, and when using more
than 1000 sample vectors.
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4 On the temporal concentration parameter λ0
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Fig. 4. Choosing the right temporal concentration parameter λ0 — The choice
of the temporal concentration parameter λ0 can lead to bias. (Left) The problem with
its choice in [1] is that events happening at large time ranges are likely to go undetected,
as the Hawkes intensity at these ranges cannot be larger than λ0. (Middle) A first
solution consists in paving the space with evenly spaced Gaussian functions that all
share the same standard deviation. (Right) A second solution is to make λ0 a function
of time so that its ratio with the temporal kernel remains constant.

While not specifically related to the implementation of the multivariate case,
we discuss in this paragraph an important consideration when designing DHP-
based models. In most of recently published works on the topic [1–3], inference
on real-world processes is done using a RBF temporal kernel. It means that
time is paved with Gaussian functions centered at various points in time; the
parameter α in DHP-based models accounts for the weights given to each of
these Gaussian functions.

In these works, the kernel is chosen so that it accounts for different time scales
by centering Gaussian functions on unevenly spaced points in time. The standard
deviation of each of these entries vary to account for larger time ranges. However,
all values of a Gaussian function are small when their standard deviation is large,
for normalization reasons –the maximum value of a Gaussian function whose
standard deviation is σ is 1√

2πσ2
.

In the SMC algorithm, this RBF kernel is evaluated at a single point in
time, and confronted to the temporal concentration parameter λ0 to determine
whether to open a new cluster. In [1, 3], such values are compared to λ0 constant
in time. It means that, mechanically, these methods cannot detect observations
triggered by such Gaussian functions as their value is systematically lower than
λ0 –typically at long time ranges in [1, 3], which can be seen from these articles’
kernel plots that fade as time goes. We illustrate the problem in Fig. 4 (left).

Consider for instance the RBF kernel used in [1, 3], with the Gaussian means
equal to 0.5, 1, 8, 12, 24, 48, 72, 96, 120, 144 and 168 hours, and the corresponding
deviations equal to 1, 1, 8, 12, 12, 24, 24, 24, 24, 24, and 24 hours. The authors
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used λ0 = 0.01. For the last entry of their RBF kernel, the maximum value of the
Gaussian function G(µ = 168;σ = 24) is about 3.10−4, which is much smaller
than λ0 = 1.10−2. It means that even for a cluster whose intensity function only
acts at long-ranges, the chances of spotting events triggered by such clusters are
about 3%. This makes the models presented in [1, 3] unfit to spot long-range
interactions.

There are two ways to overcome this problem (that we illustrate in Fig. 4
middle and right), so that λ0 can be consistently confronted to the clusters’
temporal kernels:

– To consider an RBF kernel whose Gaussian function all share the same
deviation, while keeping λ0 constant. We choose this solution in the follow-
up experimental section.

– To consider a λ0 that can vary in time according to the maximum value of
the RBF kernel at different time points –which depends on their standard
deviation.

5 Reddit dataset characteristics

We present some characteristics of the dataset used for the real-world experi-
ments of the main article in Fig. 5.
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Fig. 5. Characteristics of the Reddit News dataset — For ∼8,000 headlines
and ∼7,500 different words (Top-Left) Distribution of the words count (Top-Right)
Distribution of headlines popularity (Bottom-Left) How many headlines per subreddit
(Bottom-Right) How publications spread over time
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