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|

Gaél Poux-Médard?, Julien Velcin®, Sabine Loudcher
o hitps://gaelpouxmedard.github.io/

5 https://eric.univ-lyon2.fr/jvelcin

e
—

[New estimates predict climate change is coming for crops sooner than expecte. I[New Zealand's Covid-19 cases touch all-time high, govt pushes for vaccinatiou] e is using machine learning to spot crime patterns | StateScoop]
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From a stream of textual documents
spread by users at given times, our
approach retrieves meaningful topics
as well as the underlying topic
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number of topics also inferred
automatically.

The model is trained using a Sequential
Monte Carlo algorithm.
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A dynamic clustering prior Key points
Infers topics based on content, time and source
We consider a stream of user-generated timestamped : TTHE : Houston NRxDM DHP NetRate
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While most of existing diffusion models consider documents’ The interplay between these quantities give the prior probability that the new = ) ’
textual content, source and date separately or sequentially, node is infected by either information. :
our approach considers all three of them jointly. Most Typically, the prior probability of getting infected equals the negative E N e .,.
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For each partlcle (eaCh run in the Monte-Carlo algﬂrlthm) Ngte that several topics can spread through a same node. ?he topp networks
g Step 1 ) ( A ( A have been inferred using only a sequence of textual content, date of
Cluster selection for document i .Stepf 2 Step 3 | publication and source user.
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@ <] 5 e ) approximation of their diffusion subnetworks. We make a case
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\ RN ~ = ~ ~/ Y instead of sequentially improve our results. It is to our
knowledge the first time this is possible using an online
Figure 5 - Sequential Monte Carlo inference procedure. The Dirichlet-Survival prior intervenes in step 1, where it is multiplied by the likelihood of the associated inference algorithm.

model (here, a language model)
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